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FLEXURAL VIBRATIONS OF A PIEZOELECTRIC BIMORPH
WITH A CUT INTERNAL ELECTRODE

UDC 539.3A. O. Vatul’yan and A. A. Rynkova

Stationary vibrations of a bimorph plate composed of two piezoelectric layers of equal thickness
are studied. There is an infinitely thin cut electrode between the layers. A model of flexural
vibrations of the bimorph that is based on the variational equation generalizing the Hamilton
principle in electroelasticity is proposed. For the plane problem, a system of equations of
motion is derived and the boundary conditions and the conjugate conditions at the interface of
the regions of the cut electrode are formulated. For the TsTS-19 piezoceramics, resonance and
antiresonance frequencies are calculated. The values obtained are compared with the calculation
results obtained with the use of the Kirchhoff model and the finite-element method. It is shown
that the use of a plate with a cut electrode allows one to increase the efficiency of vibration
excitation compared to the case of a continuous internal electrode.

The use of piezoelectric transducers in technical devices makes it necessary to develop models and
methods of calculating the electric and mechanical fields in a piezoelectrically active medium.

Among studies dealing with the development of applied models of flexure of layered piezoelectric struc-
tures, the paper by Getman and Ustinov [1], in which the general regularities of deformation of inhomogeneous
electroelastic plates are analyzed and a method of constructing a certain class of exact inhomogeneous solu-
tions is proposed, is noteworthy.

The development of simplified models is important for practical calculation of electroelastic fields.
Parton and Kudryavtsev [2] outlined the general scheme for studying the three-dimensional equations of
electroelasticity. Using hypotheses on the distribution of electric and mechanical fields, Vatul’yan, Getman,
and Lapitskaya [3] reduced the problem to the classical problem of bending.

As a rule, the models with continuous electrodes are employed to study vibrations of piezoelectric
plates. In the present paper, a model of a piezoelectric bimorph plate with a cut internal electrode is proposed.
Vatul’yan and Rynkova [4] treated a similar problem with the use of equations given in [3], where the Kirchhoff
hypotheses for a piecewise homogeneous plate were used to obtain the classical vibration equations for the
deflection of the middle surface of a bimorph plate, omitting the character of the electric-field distribution.

Vibrations of layered plates with cut electrodes are of interest in connection with the possibility of
effective excitation of certain vibration modes. In the present paper, a model of flexural vibrations of a two-
layer plate with a cut internal electrode is proposed. The model is constructed with the use of a variational
equation for a piezoelectric medium that is the generalization of the Hamilton principle in the theory of
elasticity.

We consider the plane problem of stationary flexural vibrations of a band plate which is infinite in
the x2 direction and consists of two equal-thickness piezoceramic layers polarized in the x3 direction. The
coordinate origin is at the middle surface of the plate. It is assumed that all the functions considered do not
depend on the variable x2.
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Fig. 1

Let there be electrodes on the faces of the plate x3 = ±h and an infinitely thin cut electrode between the
layers on the plane x3 = 0. We denote the intersection of the plate and the middle surface by Ω = Ω1 ∪ Ω2,
where Ω1 is the electrode-free region and Ω2 is the electrode-equipped region. Let Ω1 = {(x1, x2): x1 ∈
[−a, ξ], x2 ∈ (−∞,+∞)} and Ω2 = {(x1, x2): x1 ∈ [ξ, a], x2 ∈ (−∞,+∞)}, where ξ ∈ (−a, a) is the
coordinate of the point separating these regions (Fig. 1). Vibrations are excited by the difference between
the potentials on the faces and the cut internal electrode: ϕ

∣∣∣
x3=0

= V0 eiωt, x1 ∈ Ω2 and ϕ
∣∣∣
x3=±h

= 0, where

ϕ is the electric potential, ω is the vibration frequency, and V0 = const is the specified amplitude.
Vibrations of the plate are governed by the equations [2]

σij,j = −ρω2ui, Di,i = 0,

in which σij are the stress-tensor components, Di are the components of the electric-induction vector, i, j = 1,
3, and ρ is the density of piezoceramics. It is assumed that the lateral surface of the plate is stress-free: σ11 = 0
and σ13 = 0 for x1 = ±a. The faces x3 = ±h are free from loads: σ13 = σ33 = 0. Let air be the ambient
medium and, hence, D1 = 0 for x1 = ±a.

The governing relations for an electroelastic medium polarized in the x3 direction have the form [2]

σ11 = cE11ε11 + cE13ε33 + e31ϕ,3, σ33 = cE13ε11 + cE33ε33 + e33ϕ,3, σ13 = 2cE44ε13 + e31ϕ,1,
(1)

D1 = 2e15ε13 − εS11ϕ,1, D3 = e31ε11 + e33ε33 + εS33ϕ,3.

Here εij are the strain-tensor components, cEij are the moduli of elasticity measured in the presence of a
constant electric field, e31, e33, and e15 are the piezoelectric constants, and εS11 and εS33 are the permittivities
for constant strains.

We now make some simplifications. We use the Kirchhoff hypotheses on the displacement distribution
over the thickness: u1(x1, x3) = −x3w,1 and u3(x1, x3) = w(x1), where w(x1) is the deflection of the middle
surface of the plate. In accordance with the Kirchhoff hypotheses, we assume that the normal stress σ33 = 0
everywhere in the region occupied by the plate. Using the constitutive relation for σ33, we eliminate the
strain ε33 from the equation of state of the piezoelectric medium (1):

σ11 = c∗11u1,1 + e∗31ϕ,3, D3 = e∗31u1,1 − ε∗33ϕ,3. (2)

Here c∗11 = cE11 − (cE13)2/cE33, e∗31 = e31 − cE13e33/c
E
33, and ε∗33 = εS33 + e2

33/c
E
33. The expressions for σ13 and D1

remain the same.
In contrast to [3, 4], where the problem is reduced to an equation of one function, we introduce two

functions. Let the function V (x1) be a value of the electric potential ϕ(x1, x3) on the middle surface x3 = 0.
In the electrode-free region Ω1, this function is unknown, whereas in the region Ω2, we have V (x1) = V0.
Obviously, the electric-potential function is continuous. However, in the presence of the internal electrode,
the derivative ϕ,3 has a discontinuity at x3 = 0. Therefore, at the central electrode x3 = 0, the normal
component of the electric-induction vector D3 has a jump denoted by q(x1) = D3(x1,+0)−D3(x1,−0). We
note that in the region Ω1, the function D3 is continuous, and, hence, q(x1) ≡ 0 therein.

We assume that the electric potential is characterized by the following distribution over the x3 coor-
dinate:
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ϕ(x1, x3) =
(

1− x2
3

h2

)
V (x1) +

h

2ε∗33

(x2
3

h2
− |x3|

h

)
q(x1). (3)

The potential taken in the form (3) satisfies automatically the boundary conditions at the faces x3 = ±h and
the internal electrode and the discontinuity condition for ϕ,3.

We use the variational equation that generalizes the Hamilton principle in the theory of electroelasticity.
In the case where the vibrations are stationary, and the mass forces, the surface loads, and the surface charges
are absent, for plane strain, this equation has the form [2]

a∫
−a

h∫
−h

δH dx3 dx1 − ρω2

a∫
−a

h∫
−h

uiδui dx3 dx1 = 0. (4)

The electric enthalpy H = U − EiDi, where U is the internal energy, is a function of strains εij and electric
field Ei. The enthalpy variation is given by δH = σijδεij −DiδEi. With allowance for the above hypotheses,
we obtain

δH = σ11δε11 −D1δE1 −D3δE3. (5)

We now calculate the stress-tensor and the electric-induction vector components in each region by
formulas (1) and (2) and substitute the resulting expressions into (5). Let δHI and δHII be the enthalpy
variations in the regions Ω1 and Ω2, respectively. We calculate the variation δHI and δHII in the segments
[−a, ξ] and [ξ, a], respectively, and integrate the resulting expressions over the thickness. Using the variational
equation (4), we obtain equations which involve the independent variations δwI and δV in the region Ω1 and
δwII and δq in the region Ω2. Equating the coefficients of the independent variations to zero, we obtain the
following systems of differential equations:

a11
d4wI

dx4
1

+ a12
d2V

dx2
1

+
2
3
h3ρω2 d

2wI

dx2
1

− 2hρω2wI = 0,

a21
d2wI

dx2
1

+ a22
d2V

dx2
1

− a23V = 0, x1 ∈ Ω1,

a11
d4wII

dx4
1

− a13
d2q

dx2
1

+
2
3
h3ρω2d

2wII

dx2
1

− 2hρω2wII = 0,

a31
d2wII

dx2
1

− a32
d2q

dx2
1

+ a33q −
1
3
V0 = 0, x1 ∈ Ω2.

The coefficients in these equations depend on the physical constants of the material and the geometrical
dimensions of the plate:

a11 = (2/3)h3c∗11, a12 = a21 = (4/3)he∗31, a22 = (16/15)hεS11,

a23 =
8

3h
ε∗33, a13 = a31 =

h2

6
e∗31

ε∗33

, a32 =
h3

60
εS11

(ε∗33)2
, a33 =

1
6
h

ε∗33

.

Equating the coefficients of the independent variations in the integrated terms, we obtain the boundary
conditions

a11
d3wI

dx3
1

+ a12
dV

dx1
+

2
3
h3ρω2 dw

I

dx1
= 0, a11

d2wI

dx2
1

+ a12V = 0,
dV

dx1
= 0 for x1 = −a,

a11
d3wII

dx3
1

− a13
dq

dx1
+

2
3
h3ρω2 dw

II

dx1
= 0, a11

d2wII

dx2
1

+ a12V0 − a13q = 0,
dq

dx1
= 0 for x1 = −a.

As the conjugation conditions at the boundary of the regions x1 = ξ, we require that the deflection and the
slope be continuous wI = wII and dwI/dx1 = dwII/dx1. Equating the coefficients of the variations δwI and
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TABLE 1

Variational Kirchhoff
FEM

ξ l principle theory

ω∗r ω∗a ω∗r ω∗a ω∗r ω∗a

First mode

−0.5 0.75 1.0338 1.1152 0.9729 0.9834 1.0175 1.0422

0.1 0.45 1.0743 1.1108 0.9902 0.9939 1.0595 1.0672

0.8 0.10 1.1152 1.1155 1.0007 1.0008 1.0988 1.0989

Second mode

−0.5 0.75 2.8005 2.8056 2.6717 2.6718 2.6561 2.6592

0.1 0.45 2.8879 2.9940 2.7214 2.7363 2.7423 2.7649

0.8 0.10 2.9931 2.9972 2.7704 2.7705 2.8498 2.8508

Note. ω∗r = ωr · 10−5 Hz and ω∗a = ωa · 10−5 Hz.

δwII, dδwI/dx1 and dδwII/dx1, and δq in the integrated terms in the variational equations, we obtain three
matching conditions:

a11

(d3wI

dx3
1

− d3wII

dx3
1

)
+

2
3
h3ρω2

(dwI

dx1
− dwII

dx1

)
+ a12

dV

dx1
+ a13

dq

dx1
= 0,

a11

(d2wI

dx2
1

− d2wII

dx2
1

)
+ a12(V − V0)− a13q = 0,

dq

dx1
= 0.

Finally, we require that the potential be continuous in passing through the boundary: V = V0 for x1 = ξ.
Thus, we have obtained two systems of differential equations for the following four desired functions:

the deflection wI and the potential V in the region Ω1 and the deflection wII and the jump in the normal
component of the electric-induction vector on the middle surface q in the region Ω2. Each system contains a
fourth-order equation for the deflection function.

The above-constructed model enables one to calculate the resonance frequencies ωr. The antiresonance
frequencies ωa are determined under the condition that the current passing through the electrode vanishes:

I = −iω
∫
S

D3 ds = 0. As the surface S, we use the face electrode x3 = h. In this case, the condition for

determining the antiresonance frequencies takes the form
ξ∫
−a

(
he∗31

d2wI

dx1
− 2
h
ε∗33V

)
dx1 +

a∫
ξ

(
he∗31

d2wII

dx1
− 2
h
ε∗33V0 +

1
2
q
)
dx1 = 0.

We solved the formulated problem for a TsTS-19 plate with the thickness-to-width ratio h/a = 0.1 [5].
The frequencies ωr and ωa were calculated for various values of ξ. The efficiency of vibrations was estimated
on the basis of the magnitude of the dynamic electromechanical-coupling coefficient [2] k2

d = (ω2
a − ω2

r )/ω
2
a.

The vibration frequencies calculated by the model proposed are compared with the theoretical results
[4] based on the classical Kirchhoff hypotheses and finite-element results for an electroelastic rectangle. Table
1 lists some resonance ωr and antiresonance ωa frequencies for the first two vibration modes [l = (a−ξ)/(2a) is
the relative length of the electrode-equipped surface Ω2]. The frequencies increase monotonically as the length
of the electrode l decreases, the antiresonance frequencies being smaller than the resonance frequencies. These
results are in agreement with the theoretical statements given in [6] and the numerical results obtained in [4].

The first frequencies predicted by the above model and by the model of [4] differ from those calculated
by the finite-element method by 1–2 and 4–9%, respectively. The errors in determining the second frequencies
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Fig. 2

relative to the finite-element results are 4–5% and 1–3% according to the above-considered theory and the
theory of [4], respectively.

Figure 2 shows the dynamic coefficient of electromechanical coupling k2
d versus the relative length of

the electrode l for the first four vibration modes (curves 1–4). The points refer to the model proposed. The
value l = 1 corresponds to the case of a continuous electrode. It follows from the results that, for each
vibration mode, the internal electrode can be cut in such a manner that the efficiency of vibration excitation
is higher than that for a continuous electrode. For the first mode, the coefficient k2

d can be increased by
approximately 9% for a relative length of the internal electrode equal to 0.70–0.85. In exciting higher modes,
one can increase the efficiency by decreasing the length of the electrode and by choosing it in the range from
0.3 to 0.5 for the second mode and from 0.2 to 0.4 for the third and fourth vibration modes.
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